Search
Total
413 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2023-44271 | 2 Fedoraproject, Python | 2 Fedora, Pillow | 2024-01-12 | N/A | 7.5 HIGH |
| An issue was discovered in Pillow before 10.0.0. It is a Denial of Service that uncontrollably allocates memory to process a given task, potentially causing a service to crash by having it run out of memory. This occurs for truetype in ImageFont when textlength in an ImageDraw instance operates on a long text argument. | |||||
| CVE-2023-6337 | 1 Hashicorp | 1 Vault | 2024-01-12 | N/A | 7.5 HIGH |
| HashiCorp Vault and Vault Enterprise 1.12.0 and newer are vulnerable to a denial of service through memory exhaustion of the host when handling large unauthenticated and authenticated HTTP requests from a client. Vault will attempt to map the request to memory, resulting in the exhaustion of available memory on the host, which may cause Vault to crash. Fixed in Vault 1.15.4, 1.14.8, 1.13.12. | |||||
| CVE-2023-37934 | 2024-01-11 | N/A | N/A | ||
| An allocation of resources without limits or throttling vulnerability [CWE-770] in FortiPAM 1.0 all versions allows an authenticated attacker to perform a denial of service attack via sending crafted HTTP or HTTPS requests in a high frequency. | |||||
| CVE-2023-46738 | 1 Linuxfoundation | 1 Cubefs | 2024-01-10 | N/A | 6.5 MEDIUM |
| CubeFS is an open-source cloud-native file storage system. A security vulnerability was found in CubeFS HandlerNode in versions prior to 3.3.1 that could allow authenticated users to send maliciously-crafted requests that would crash the ObjectNode and deny other users from using it. The root cause was improper handling of incoming HTTP requests that could allow an attacker to control the ammount of memory that the ObjectNode would allocate. A malicious request could make the ObjectNode allocate more memory that the machine had available, and the attacker could exhaust memory by way of a single malicious request. An attacker would need to be authenticated in order to invoke the vulnerable code with their malicious request and have permissions to delete objects. In addition, the attacker would need to know the names of existing buckets of the CubeFS deployment - otherwise the request would be rejected before it reached the vulnerable code. As such, the most likely attacker is an inside user or an attacker that has breached the account of an existing user in the cluster. The issue has been patched in v3.3.1. There is no other mitigation besides upgrading. | |||||
| CVE-2024-21634 | 1 Amazon | 1 Ion | 2024-01-10 | N/A | 7.5 HIGH |
| Amazon Ion is a Java implementation of the Ion data notation. Prior to version 1.10.5, a potential denial-of-service issue exists in `ion-java` for applications that use `ion-java` to deserialize Ion text encoded data, or deserialize Ion text or binary encoded data into the `IonValue` model and then invoke certain `IonValue` methods on that in-memory representation. An actor could craft Ion data that, when loaded by the affected application and/or processed using the `IonValue` model, results in a `StackOverflowError` originating from the `ion-java` library. The patch is included in `ion-java` 1.10.5. As a workaround, do not load data which originated from an untrusted source or that could have been tampered with. | |||||
| CVE-2024-0241 | 1 Diaconou | 1 Encodedid\ | 2024-01-10 | N/A | 7.5 HIGH |
| encoded_id-rails versions before 1.0.0.beta2 are affected by an uncontrolled resource consumption vulnerability. A remote and unauthenticated attacker might cause a denial of service condition by sending an HTTP request with an extremely long "id" parameter. | |||||
| CVE-2023-45862 | 2 Linux, Netapp | 4 Linux Kernel, Active Iq Unified Manager, H410c and 1 more | 2024-01-08 | N/A | 5.5 MEDIUM |
| An issue was discovered in drivers/usb/storage/ene_ub6250.c for the ENE UB6250 reader driver in the Linux kernel before 6.2.5. An object could potentially extend beyond the end of an allocation. | |||||
| CVE-2023-50730 | 1 Typelevel | 1 Grackle | 2024-01-08 | N/A | 7.5 HIGH |
| Grackle is a GraphQL server written in functional Scala, built on the Typelevel stack. The GraphQL specification requires that GraphQL fragments must not form cycles, either directly or indirectly. Prior to Grackle version 0.18.0, that requirement wasn't checked, and queries with cyclic fragments would have been accepted for type checking and compilation. The attempted compilation of such fragments would result in a JVM `StackOverflowError` being thrown. Some knowledge of an applications GraphQL schema would be required to construct such a query, however no knowledge of any application-specific performance or other behavioural characteristics would be needed. Grackle uses the cats-parse library for parsing GraphQL queries. Prior to version 0.18.0, Grackle made use of the cats-parse `recursive` operator. However, `recursive` is not currently stack safe. `recursive` was used in three places in the parser: nested selection sets, nested input values (lists and objects), and nested list type declarations. Consequently, queries with deeply nested selection sets, input values or list types could be constructed which exploited this, causing a JVM `StackOverflowException` to be thrown during parsing. Because this happens very early in query processing, no specific knowledge of an applications GraphQL schema would be required to construct such a query. The possibility of small queries resulting in stack overflow is a potential denial of service vulnerability. This potentially affects all applications using Grackle which have untrusted users. Both stack overflow issues have been resolved in the v0.18.0 release of Grackle. As a workaround, users could interpose a sanitizing layer in between untrusted input and Grackle query processing. | |||||
| CVE-2023-45129 | 2 Fedoraproject, Matrix | 2 Fedora, Synapse | 2024-01-07 | N/A | 4.9 MEDIUM |
| Synapse is an open-source Matrix homeserver written and maintained by the Matrix.org Foundation. Prior to version 1.94.0, a malicious server ACL event can impact performance temporarily or permanently leading to a persistent denial of service. Homeservers running on a closed federation (which presumably do not need to use server ACLs) are not affected. Server administrators are advised to upgrade to Synapse 1.94.0 or later. As a workaround, rooms with malicious server ACL events can be purged and blocked using the admin API. | |||||
| CVE-2023-0809 | 1 Eclipse | 1 Mosquitto | 2024-01-07 | N/A | 5.3 MEDIUM |
| In Mosquitto before 2.0.16, excessive memory is allocated based on malicious initial packets that are not CONNECT packets. | |||||
| CVE-2023-3171 | 1 Redhat | 2 Enterprise Linux, Jboss Enterprise Application Platform | 2024-01-04 | N/A | 7.5 HIGH |
| A flaw was found in EAP-7 during deserialization of certain classes, which permits instantiation of HashMap and HashTable with no checks on resources consumed. This issue could allow an attacker to submit malicious requests using these classes, which could eventually exhaust the heap and result in a Denial of Service. | |||||
| CVE-2023-6563 | 1 Redhat | 6 Enterprise Linux, Keycloak, Openshift Container Platform and 3 more | 2023-12-27 | N/A | 7.7 HIGH |
| An unconstrained memory consumption vulnerability was discovered in Keycloak. It can be triggered in environments which have millions of offline tokens (> 500,000 users with each having at least 2 saved sessions). If an attacker creates two or more user sessions and then open the "consents" tab of the admin User Interface, the UI attempts to load a huge number of offline client sessions leading to excessive memory and CPU consumption which could potentially crash the entire system. | |||||
| CVE-2023-38532 | 1 Siemens | 2 Parasolid, Teamcenter Visualization | 2023-12-22 | N/A | 5.5 MEDIUM |
| A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected application contains a stack exhaustion vulnerability while parsing a specially crafted X_T file. This could allow an attacker to cause denial of service condition. | |||||
| CVE-2020-18899 | 1 Exiv2 | 1 Exiv2 | 2023-12-22 | 4.3 MEDIUM | 6.5 MEDIUM |
| An uncontrolled memory allocation in DataBufdata(subBox.length-sizeof(box)) function of Exiv2 0.27 allows attackers to cause a denial of service (DOS) via a crafted input. | |||||
| CVE-2023-5379 | 1 Redhat | 3 Jboss Enterprise Application Platform, Single Sign-on, Undertow | 2023-12-20 | N/A | 7.5 HIGH |
| A flaw was found in Undertow. When an AJP request is sent that exceeds the max-header-size attribute in ajp-listener, JBoss EAP is marked in an error state by mod_cluster in httpd, causing JBoss EAP to close the TCP connection without returning an AJP response. This happens because mod_proxy_cluster marks the JBoss EAP instance as an error worker when the TCP connection is closed from the backend after sending the AJP request without receiving an AJP response, and stops forwarding. This issue could allow a malicious user could to repeatedly send requests that exceed the max-header-size, causing a Denial of Service (DoS). | |||||
| CVE-2023-50247 | 1 Dena | 1 H2o | 2023-12-19 | N/A | 7.5 HIGH |
| h2o is an HTTP server with support for HTTP/1.x, HTTP/2 and HTTP/3. The QUIC stack (quicly), as used by H2O up to commit 43f86e5 (in version 2.3.0-beta and prior), is susceptible to a state exhaustion attack. When H2O is serving HTTP/3, a remote attacker can exploit this vulnerability to progressively increase the memory retained by the QUIC stack. This can eventually cause H2O to abort due to memory exhaustion. The vulnerability has been resolved in commit d67e81d03be12a9d53dc8271af6530f40164cd35. HTTP/1 and HTTP/2 are not affected by this vulnerability as they do not use QUIC. Administrators looking to mitigate this issue without upgrading can disable HTTP/3 support. | |||||
| CVE-2023-4486 | 1 Johnsoncontrols | 20 F4-snc, F4-snc Firmware, Nae55 and 17 more | 2023-12-19 | N/A | 7.5 HIGH |
| Under certain circumstances, invalid authentication credentials could be sent to the login endpoint of Johnson Controls Metasys NAE55, SNE, and SNC engines prior to versions 11.0.6 and 12.0.4 and Facility Explorer F4-SNC engines prior to versions 11.0.6 and 12.0.4 to cause denial-of-service. | |||||
| CVE-2023-46695 | 1 Djangoproject | 1 Django | 2023-12-14 | N/A | 7.5 HIGH |
| An issue was discovered in Django 3.2 before 3.2.23, 4.1 before 4.1.13, and 4.2 before 4.2.7. The NFKC normalization is slow on Windows. As a consequence, django.contrib.auth.forms.UsernameField is subject to a potential DoS (denial of service) attack via certain inputs with a very large number of Unicode characters. | |||||
| CVE-2023-5072 | 1 Json-java Project | 1 Json-java | 2023-12-13 | N/A | 7.5 HIGH |
| Denial of Service in JSON-Java versions up to and including 20230618. A bug in the parser means that an input string of modest size can lead to indefinite amounts of memory being used. | |||||
| CVE-2023-50455 | 1 Zammad | 1 Zammad | 2023-12-13 | N/A | 7.5 HIGH |
| An issue was discovered in Zammad before 6.2.0. Due to lack of rate limiting in the "email address verification" feature, an attacker could send many requests for a known address to cause Denial Of Service (generation of many emails, which would also spam the victim). | |||||
| CVE-2023-38039 | 2 Fedoraproject, Haxx | 2 Fedora, Curl | 2023-12-12 | N/A | 7.5 HIGH |
| When curl retrieves an HTTP response, it stores the incoming headers so that they can be accessed later via the libcurl headers API. However, curl did not have a limit in how many or how large headers it would accept in a response, allowing a malicious server to stream an endless series of headers and eventually cause curl to run out of heap memory. | |||||
| CVE-2023-27530 | 2 Debian, Rack Project | 2 Debian Linux, Rack | 2023-12-08 | N/A | 7.5 HIGH |
| A DoS vulnerability exists in Rack <v3.0.4.2, <v2.2.6.3, <v2.1.4.3 and <v2.0.9.3 within in the Multipart MIME parsing code in which could allow an attacker to craft requests that can be abuse to cause multipart parsing to take longer than expected. | |||||
| CVE-2023-35116 | 1 Fasterxml | 1 Jackson-databind | 2023-12-07 | N/A | 4.7 MEDIUM |
| jackson-databind through 2.15.2 allows attackers to cause a denial of service or other unspecified impact via a crafted object that uses cyclic dependencies. NOTE: the vendor's perspective is that this is not a valid vulnerability report, because the steps of constructing a cyclic data structure and trying to serialize it cannot be achieved by an external attacker. | |||||
| CVE-2023-34389 | 1 Selinc | 2 Sel-451, Sel-451 Firmware | 2023-12-06 | N/A | 6.5 MEDIUM |
| An allocation of resources without limits or throttling vulnerability in the Schweitzer Engineering Laboratories SEL-451 could allow a remote authenticated attacker to make the system unavailable for an indefinite amount of time. See product Instruction Manual Appendix A dated 20230830 for more details. | |||||
| CVE-2023-42504 | 1 Apache | 1 Superset | 2023-12-04 | N/A | 6.5 MEDIUM |
| An authenticated malicious user could initiate multiple concurrent requests, each requesting multiple dashboard exports, leading to a possible denial of service. This issue affects Apache Superset: before 3.0.0 | |||||
| CVE-2022-41717 | 2 Fedoraproject, Golang | 3 Fedora, Go, Http2 | 2023-12-02 | N/A | 5.3 MEDIUM |
| An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests. HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection. | |||||
| CVE-2023-24536 | 1 Golang | 1 Go | 2023-11-25 | N/A | 7.5 HIGH |
| Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=. | |||||
| CVE-2023-39322 | 1 Golang | 1 Go | 2023-11-25 | N/A | 7.5 HIGH |
| QUIC connections do not set an upper bound on the amount of data buffered when reading post-handshake messages, allowing a malicious QUIC connection to cause unbounded memory growth. With fix, connections now consistently reject messages larger than 65KiB in size. | |||||
| CVE-2022-2879 | 1 Golang | 1 Go | 2023-11-25 | N/A | 7.5 HIGH |
| Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB. | |||||
| CVE-2022-41725 | 1 Golang | 1 Go | 2023-11-25 | N/A | 7.5 HIGH |
| A denial of service is possible from excessive resource consumption in net/http and mime/multipart. Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely unlimited amounts of memory and disk files. This also affects form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. ReadForm takes a maxMemory parameter, and is documented as storing "up to maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts which cannot be stored in memory are stored on disk in temporary files. The unconfigurable 10MB reserved for non-file parts is excessively large and can potentially open a denial of service vector on its own. However, ReadForm did not properly account for all memory consumed by a parsed form, such as map entry overhead, part names, and MIME headers, permitting a maliciously crafted form to consume well over 10MB. In addition, ReadForm contained no limit on the number of disk files created, permitting a relatively small request body to create a large number of disk temporary files. With fix, ReadForm now properly accounts for various forms of memory overhead, and should now stay within its documented limit of 10MB + maxMemory bytes of memory consumption. Users should still be aware that this limit is high and may still be hazardous. In addition, ReadForm now creates at most one on-disk temporary file, combining multiple form parts into a single temporary file. The mime/multipart.File interface type's documentation states, "If stored on disk, the File's underlying concrete type will be an *os.File.". This is no longer the case when a form contains more than one file part, due to this coalescing of parts into a single file. The previous behavior of using distinct files for each form part may be reenabled with the environment variable GODEBUG=multipartfiles=distinct. Users should be aware that multipart.ReadForm and the http.Request methods that call it do not limit the amount of disk consumed by temporary files. Callers can limit the size of form data with http.MaxBytesReader. | |||||
| CVE-2023-39269 | 1 Siemens | 127 Ruggedcom I800, Ruggedcom I800nc, Ruggedcom I801 and 124 more | 2023-11-14 | N/A | 7.5 HIGH |
| A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. The web server of the affected devices contains a vulnerability that may lead to a denial of service condition. An attacker may cause total loss of availability of the web server, which might recover after the attack is over. | |||||
| CVE-2021-28038 | 3 Debian, Linux, Netapp | 4 Debian Linux, Linux Kernel, Cloud Backup and 1 more | 2023-08-22 | 4.9 MEDIUM | 6.5 MEDIUM |
| An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV. A certain part of the netback driver lacks necessary treatment of errors such as failed memory allocations (as a result of changes to the handling of grant mapping errors). A host OS denial of service may occur during misbehavior of a networking frontend driver. NOTE: this issue exists because of an incomplete fix for CVE-2021-26931. | |||||
| CVE-2023-34455 | 1 Xerial | 1 Snappy-java | 2023-08-18 | N/A | 7.5 HIGH |
| snappy-java is a fast compressor/decompressor for Java. Due to use of an unchecked chunk length, an unrecoverable fatal error can occur in versions prior to 1.1.10.1. The code in the function hasNextChunk in the fileSnappyInputStream.java checks if a given stream has more chunks to read. It does that by attempting to read 4 bytes. If it wasn’t possible to read the 4 bytes, the function returns false. Otherwise, if 4 bytes were available, the code treats them as the length of the next chunk. In the case that the `compressed` variable is null, a byte array is allocated with the size given by the input data. Since the code doesn’t test the legality of the `chunkSize` variable, it is possible to pass a negative number (such as 0xFFFFFFFF which is -1), which will cause the code to raise a `java.lang.NegativeArraySizeException` exception. A worse case would happen when passing a huge positive value (such as 0x7FFFFFFF), which would raise the fatal `java.lang.OutOfMemoryError` error. Version 1.1.10.1 contains a patch for this issue. | |||||
| CVE-2023-25577 | 1 Palletsprojects | 1 Werkzeug | 2023-08-18 | N/A | 7.5 HIGH |
| Werkzeug is a comprehensive WSGI web application library. Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses `request.data`, `request.form`, `request.files`, or `request.get_data(parse_form_data=False)`, it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. Version 2.2.3 contains a patch for this issue. | |||||
| CVE-2023-33953 | 1 Grpc | 1 Grpc | 2023-08-17 | N/A | 7.5 HIGH |
| gRPC contains a vulnerability that allows hpack table accounting errors could lead to unwanted disconnects between clients and servers in exceptional cases/ Three vectors were found that allow the following DOS attacks: - Unbounded memory buffering in the HPACK parser - Unbounded CPU consumption in the HPACK parser The unbounded CPU consumption is down to a copy that occurred per-input-block in the parser, and because that could be unbounded due to the memory copy bug we end up with an O(n^2) parsing loop, with n selected by the client. The unbounded memory buffering bugs: - The header size limit check was behind the string reading code, so we needed to first buffer up to a 4 gigabyte string before rejecting it as longer than 8 or 16kb. - HPACK varints have an encoding quirk whereby an infinite number of 0’s can be added at the start of an integer. gRPC’s hpack parser needed to read all of them before concluding a parse. - gRPC’s metadata overflow check was performed per frame, so that the following sequence of frames could cause infinite buffering: HEADERS: containing a: 1 CONTINUATION: containing a: 2 CONTINUATION: containing a: 3 etc… | |||||
| CVE-2019-11479 | 4 Canonical, F5, Linux and 1 more | 21 Ubuntu Linux, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 18 more | 2023-08-16 | 5.0 MEDIUM | 7.5 HIGH |
| Jonathan Looney discovered that the Linux kernel default MSS is hard-coded to 48 bytes. This allows a remote peer to fragment TCP resend queues significantly more than if a larger MSS were enforced. A remote attacker could use this to cause a denial of service. This has been fixed in stable kernel releases 4.4.182, 4.9.182, 4.14.127, 4.19.52, 5.1.11, and is fixed in commits 967c05aee439e6e5d7d805e195b3a20ef5c433d6 and 5f3e2bf008c2221478101ee72f5cb4654b9fc363. | |||||
| CVE-2023-39533 | 3 Golang, Libp2p, Quic Project | 3 Go, Go-libp2p, Quic | 2023-08-15 | N/A | 7.5 HIGH |
| go-libp2p is the Go implementation of the libp2p Networking Stack. Prior to versions 0.27.8, 0.28.2, and 0.29.1 malicious peer can use large RSA keys to run a resource exhaustion attack & force a node to spend time doing signature verification of the large key. This vulnerability is present in the core/crypto module of go-libp2p and can occur during the Noise handshake and the libp2p x509 extension verification step. To prevent this attack, go-libp2p versions 0.27.8, 0.28.2, and 0.29.1 restrict RSA keys to <= 8192 bits. To protect one's application, it is necessary to update to these patch releases and to use the updated Go compiler in 1.20.7 or 1.19.12. There are no known workarounds for this issue. | |||||
| CVE-2018-15383 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2023-08-15 | 7.8 HIGH | 7.5 HIGH |
| A vulnerability in the cryptographic hardware accelerator driver of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a temporary denial of service (DoS) condition. The vulnerability exists because the affected devices have a limited amount of Direct Memory Access (DMA) memory and the affected software improperly handles resources in low-memory conditions. An attacker could exploit this vulnerability by sending a sustained, high rate of malicious traffic to an affected device to exhaust memory on the device. A successful exploit could allow the attacker to exhaust DMA memory on the affected device, which could cause the device to reload and result in a temporary DoS condition. | |||||
| CVE-2018-15399 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2023-08-15 | 7.1 HIGH | 6.8 MEDIUM |
| A vulnerability in the TCP syslog module of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to exhaust the 1550-byte buffers on an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing boundary check in an internal function. An attacker could exploit this vulnerability by establishing a man-in-the-middle position between an affected device and its configured TCP syslog server and then maliciously modifying the TCP header in segments that are sent from the syslog server to the affected device. A successful exploit could allow the attacker to exhaust buffer on the affected device and cause all TCP-based features to stop functioning, resulting in a DoS condition. The affected TCP-based features include AnyConnect SSL VPN, clientless SSL VPN, and management connections such as Secure Shell (SSH), Telnet, and HTTPS. | |||||
| CVE-2023-22403 | 1 Juniper | 4 Junos, Qfx10002, Qfx10008 and 1 more | 2023-08-08 | N/A | 7.5 HIGH |
| An Allocation of Resources Without Limits or Throttling vulnerability in the Packet Forwarding Engine (PFE) of Juniper Networks Junos OS allows a network-based, unauthenticated attacker to cause a Denial of Service (DoS). On QFX10K Series, Inter-Chassis Control Protocol (ICCP) is used in MC-LAG topologies to exchange control information between the devices in the topology. ICCP connection flaps and sync issues will be observed due to excessive specific traffic to the local device. This issue affects Juniper Networks Junos OS on QFX10K Series: * All versions prior to 20.2R3-S7; * 20.4 versions prior to 20.4R3-S4; * 21.1 versions prior to 21.1R3-S3; * 21.2 versions prior to 21.2R3-S1; * 21.3 versions prior to 21.3R3; * 21.4 versions prior to 21.4R3; * 22.1 versions prior to 22.1R2. | |||||
| CVE-2023-4138 | 1 Ikus-soft | 1 Rdiffweb | 2023-08-08 | N/A | 6.5 MEDIUM |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.8.0. | |||||
| CVE-2021-39670 | 1 Google | 1 Android | 2023-08-08 | 4.9 MEDIUM | 5.5 MEDIUM |
| In setStream of WallpaperManager.java, there is a possible way to cause a permanent DoS due to improper input validation. This could lead to local denial of service with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12 Android-12LAndroid ID: A-204087139 | |||||
| CVE-2021-28714 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2023-08-08 | 2.1 LOW | 6.5 MEDIUM |
| Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) | |||||
| CVE-2021-28715 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2023-08-08 | 2.1 LOW | 6.5 MEDIUM |
| Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) | |||||
| CVE-2022-28871 | 3 Apple, F-secure, Microsoft | 4 Mac Os X, Macos, Atlant and 1 more | 2023-08-08 | 5.0 MEDIUM | 7.5 HIGH |
| A Denial-of-Service (DoS) vulnerability was discovered in F-Secure Atlant whereby the fsicapd component used in certain F-Secure products while scanning larger packages/fuzzed files consume too much memory eventually can crash the scanning engine. The exploit can be triggered remotely by an attacker. | |||||
| CVE-2022-20478 | 1 Google | 1 Android | 2023-08-08 | N/A | 7.8 HIGH |
| In NotificationChannel of NotificationChannel.java, there is a possible failure to persist permissions settings due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-241764135 | |||||
| CVE-2022-33749 | 1 Xen | 1 Xapi | 2023-08-08 | N/A | 5.3 MEDIUM |
| XAPI open file limit DoS It is possible for an unauthenticated client on the network to cause XAPI to hit its file-descriptor limit. This causes XAPI to be unable to accept new requests for other (trusted) clients, and blocks XAPI from carrying out any tasks that require the opening of file descriptors. | |||||
| CVE-2022-20480 | 1 Google | 1 Android | 2023-08-08 | N/A | 7.8 HIGH |
| In NotificationChannel of NotificationChannel.java, there is a possible failure to persist permissions settings due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-241764350 | |||||
| CVE-2022-20484 | 1 Google | 1 Android | 2023-08-08 | N/A | 7.8 HIGH |
| In NotificationChannel of NotificationChannel.java, there is a possible failure to persist permissions settings due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-242702851 | |||||
| CVE-2022-20487 | 1 Google | 1 Android | 2023-08-08 | N/A | 7.8 HIGH |
| In NotificationChannel of NotificationChannel.java, there is a possible failure to persist permissions settings due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-242703202 | |||||
