Search
Total
323 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2021-29565 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec<>()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29564 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29609 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29515 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29517 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29529 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation->upper[i]` might be smaller than `interpolation->lower[i]`. This is an issue if `interpolation->upper[i]` is capped at `in_size-1` as it means that `interpolation->lower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29524 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29541 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29526 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29528 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29554 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected. | |||||
| CVE-2021-29516 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29601 | 1 Google | 1 Tensorflow | 2021-05-20 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29518 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx->session_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29530 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context->status()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29527 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29531 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat<T>().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29578 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29579 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29582 | 1 Google | 1 Tensorflow | 2021-05-20 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29584 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29577 | 1 Google | 1 Tensorflow | 2021-05-20 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29548 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op's contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29572 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29581 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29569 | 1 Google | 1 Tensorflow | 2021-05-20 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29573 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29580 | 1 Google | 1 Tensorflow | 2021-05-20 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29600 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29512 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected. | |||||
| CVE-2021-29567 | 1 Google | 1 Tensorflow | 2021-05-19 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29586 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params->stride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29525 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29597 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29598 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params->rank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29594 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. TFLite's convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29593 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29592 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29596 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29590 | 1 Google | 1 Tensorflow | 2021-05-19 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29588 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29599 | 1 Google | 1 Tensorflow | 2021-05-19 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29574 | 1 Google | 1 Tensorflow | 2021-05-18 | 4.6 MEDIUM | 7.8 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29562 | 1 Google | 1 Tensorflow | 2021-05-18 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29561 | 1 Google | 1 Tensorflow | 2021-05-18 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar<T>()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29559 | 1 Google | 1 Tensorflow | 2021-05-18 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29557 | 1 Google | 1 Tensorflow | 2021-05-18 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29555 | 1 Google | 1 Tensorflow | 2021-05-18 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29570 | 1 Google | 1 Tensorflow | 2021-05-18 | 3.6 LOW | 7.1 HIGH |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
| CVE-2021-29575 | 1 Google | 1 Tensorflow | 2021-05-18 | 2.1 LOW | 5.5 MEDIUM |
| TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. | |||||
