Search
Total
5 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2023-20081 | 1 Cisco | 304 1100-4g Integrated Services Router, 1100-4p Integrated Services Router, 1100-6g Integrated Services Router and 301 more | 2023-08-16 | N/A | 5.9 MEDIUM |
| A vulnerability in the IPv6 DHCP (DHCPv6) client module of Cisco Adaptive Security Appliance (ASA) Software, Cisco Firepower Threat Defense (FTD) Software, Cisco IOS Software, and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of DHCPv6 messages. An attacker could exploit this vulnerability by sending crafted DHCPv6 messages to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: To successfully exploit this vulnerability, the attacker would need to either control the DHCPv6 server or be in a man-in-the-middle position. | |||||
| CVE-2022-20677 | 1 Cisco | 62 8101-32fh, 8101-32h, 8102-64h and 59 more | 2022-04-25 | 7.2 HIGH | 6.7 MEDIUM |
| Multiple vulnerabilities in the Cisco IOx application hosting environment on multiple Cisco platforms could allow an attacker to inject arbitrary commands into the underlying host operating system, execute arbitrary code on the underlying host operating system, install applications without being authenticated, or conduct a cross-site scripting (XSS) attack against a user of the affected software. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
| CVE-2021-34703 | 1 Cisco | 203 Catalyst 3650-12x48fd-e, Catalyst 3650-12x48fd-l, Catalyst 3650-12x48fd-s and 200 more | 2021-10-25 | 6.8 MEDIUM | 6.5 MEDIUM |
| A vulnerability in the Link Layer Discovery Protocol (LLDP) message parser of Cisco IOS Software and Cisco IOS XE Software could allow an attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to improper initialization of a buffer. An attacker could exploit this vulnerability via any of the following methods: An authenticated, remote attacker could access the LLDP neighbor table via either the CLI or SNMP while the device is in a specific state. An unauthenticated, adjacent attacker could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then waiting for an administrator of the device or a network management system (NMS) managing the device to retrieve the LLDP neighbor table of the device via either the CLI or SNMP. An authenticated, adjacent attacker with SNMP read-only credentials or low privileges on the device CLI could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then accessing the LLDP neighbor table via either the CLI or SNMP. A successful exploit could allow the attacker to cause the affected device to crash, resulting in a reload of the device. | |||||
| CVE-2021-1449 | 1 Cisco | 14 Aironet 1540, Aironet 1560, Aironet 1800 and 11 more | 2021-03-31 | 4.6 MEDIUM | 6.7 MEDIUM |
| A vulnerability in the boot logic of Cisco Access Points Software could allow an authenticated, local attacker to execute unsigned code at boot time. The vulnerability is due to an improper check that is performed by the area of code that manages system startup processes. An attacker could exploit this vulnerability by modifying a specific file that is stored on the system, which would allow the attacker to bypass existing protections. A successful exploit could allow the attacker to execute unsigned code at boot time and bypass the software image verification check part of the secure boot process of an affected device. Note: To exploit this vulnerability, the attacker would need to have access to the development shell (devshell) on the device. | |||||
| CVE-2021-1423 | 1 Cisco | 14 Aironet 1540, Aironet 1560, Aironet 1800 and 11 more | 2021-03-31 | 2.1 LOW | 4.4 MEDIUM |
| A vulnerability in the implementation of a CLI command in Cisco Aironet Access Points (AP) could allow an authenticated, local attacker to overwrite files in the flash memory of the device. This vulnerability is due to insufficient input validation for a specific command. An attacker could exploit this vulnerability by issuing a command with crafted arguments. A successful exploit could allow the attacker to overwrite or create files with data that is already present in other files that are hosted on the affected device. | |||||
